- 1 复旦科研团队研发基于全
- 2 北京工业大学在高性能线
- 3 南科大林君浩课题组合作
- 4 圣母大学开发利用光治疗
- 5 美国开发新型自旋控制LED
- 6 中山大学团队及其合作者
- 7 中国科大在钙钛矿半导体
- 8 季华实验室在高分辨率OLE
- 9 广东省科学院半导体研究
- 10 大连化物所研制出“风车型
有机光电材料与器件的迅速发展得益于过渡金属催化的C−X/C−M传统偶联反应的发展。近年来,C−H键活化被誉为有机合成化学的“圣杯”,备受关注,但利用C−H键活化构筑有机功能分子的工作却刚刚起步,其研究还远未受到重视。化学家越来越意识到利用C−H键活化构筑有机功能材料的重要性。
含(苯并)噻吩的联杂芳烃骨架是有机光电材料中广泛存在的结构片段。过渡金属催化的杂芳烃之间的氧化C−H/C−H偶联反应无疑是构筑该类骨架最为简洁高效的策略之一。然而,由于(苯并)噻吩自身C2和C3位的电性差异,无论经历芳基亲电取代(SEAr)或协同脱氢金属化(CMD)的机制,(苯并)噻吩的C−H/C−H型芳基化反应均发生在C2位,因此实现(苯并)噻吩选择性的C3位C−H/C−H芳基化反应面临巨大挑战。
图1.(苯并)噻吩与(杂)芳烃氧化C−H/C−H交叉偶联反应发展历程
针对这一问题,游劲松课题组通过改变催化中心金属亲电性来扭转苯并噻吩在C−H/C−H氧化偶联反应中的区域选择性,实现了首例苯并噻吩C3位区域选择性C−H/C−H芳基化反应,并成功用于开发非传统结构的OLED新材料。
机理研究表明,三氟甲磺酸根对实现C3位选择性活化具有重要作用,此外作者还成功分离得到苯并噻吩加成的七元环铑去芳构化中间体,晶体结构证明该中间体需经历syn β-H消除才能得到联杂芳烃产物。
底物拓展方面,该反应展现出了良好的官能团兼容性,含各类供吸电子基团(烷基、甲氧基、卤素、三氟甲基、酰基、酯基、硝基等)和更大p共轭度的底物均能在该催化体系下顺利转化为目标产物。偶联产物经导向基脱除、分子内环化等衍生还能够顺利得到螺烯构型的苯并噻吩并异喹啉酮骨架以及苯并噻吩并异喹啉。
通过该合成方法,作者高效构筑了一类具有非传统结构的新型受体(2,3-c-BTIQO),相比于C2位连接的线性平面受体结构,其独特的螺烯构型赋予发光分子热活化延迟荧光(TADF)性质,并成功用于制备高效率蓝光OLED器件,器件发光波长为472 nm,最大外量子效率为25.4%。
图2. 苯并噻吩C3位选择性芳基化反应及OLED材料设计思路
该研究以“Insight into Regioselective Control in Aerobic Oxidative C–H/C–H Coupling for C3-Arylation of Benzothiophenes: Toward Structurally Nontraditional OLED Materials”为题目发表在Journal of the American Chemical Society上,四川大学为第一单位,化学学院游劲松教授和宾正杨副研究员为该论文通讯作者,师洋博士为论文的第一作者。特别感谢国家自然科学基金委、四川省科技厅、四川大学的经费支持。(来源:四川大学)
转载请标注来源!更多LED资讯敬请关注官网或搜索微信公众账号(LEDinside)。