西安交大制备出全球首款六方氮化硼同质结深紫外LED芯片

六方氮化硼(hBN)是重要的超宽禁带半导体材料,具有类石墨烯层状结构和独特的光电特性,在深紫外发光器件和探测器领域具有重要的应用。早在2007年,科研人员就开展了对hBN材料激子发光特性的实验研究与理论分析,相关成果发表在Science期刊上(Science, 2007, 317: 932-934),并通过阴极发光(CL)测试首次证明了hBN材料具有深紫外发光特性。

随着研究的发展,科研人员通过光致发光(PL)技术确定了hBN材料具有复杂的缺陷发光特性,且堆叠层错是缺陷发光的最主要诱因(ACS Photonics, 2014, 1(9): 857-862.)。

基于hBN材料展现出的优异紫外发光特性,近几年应用剥离单晶hBN与石墨烯材料结合,研制出了深紫外发光器件(Nature Communications, 2021, 12(1): 7134; Advanced Materials, 2022, 34(21): 2201387.)。然而,能制备出PN结型高效率半导体发光器件一直是本领域追求的目标,hBN薄膜的n/p掺杂问题(尤其是n型掺杂)一直是重大的科学和技术难题。

紫外LED

图1.(a)hBN薄膜和S掺杂hBN薄膜的光学照片;(b)hBN薄膜的SEM图;(c)S掺杂hBN薄膜的SEM图;(d)XRD图;(e)Raman图;(f)FTIR图

近期,西安交通大学电信学部电子学院李强团队,应用LPCVD系统在蓝宝石衬底进行大尺度hBN单晶薄膜的外延生长和掺杂研究。选用蓝宝石衬底直接外延生长大面积连续的hBN薄膜,通过超高温外延生长(~1400 °C)实现了hBN薄膜的高结晶度,随后应用S元素在hBN薄膜内进行了替位掺杂,成功突破了大面积hBN单晶薄膜的n型掺杂,S掺杂浓度达1.21%(图1)。

结合Mg掺杂的p型hBN薄膜,制备了基于hBN材料体系的同质PN结,即hBN:S/hBN:Mg同质结。对构建的同质PN结进行PL测试,通过对结果的分析确定了同质结形成后,光生载流子会在内建电场作用下漂移至空间电荷区内,进而发生辐射复合发光,实现了深紫外光(261nm-300nm)的出射。hBN薄膜掺杂的突破,意味着六方氮化硼可以作为深紫外光电器件的主体材料,为后续半导体型更短波段深紫外发光器件的研制提供了一个新的研究方向。

紫外LED

图2.六方氮化硼同质结构与性能表征;(a) hBN:Mg/hBN:S同质结的结构; (b)能带匹配结构;(c) 同质结的I-V曲线,插图为实物照片;(d) hBN:S薄膜和hBN:Mg/hBN:S同质结的光致发光光谱;(e)同质结的PL发光过程原理示意图。

该研究成果以Deep-UV Light-Emitting Based on the hBN:S/hBN:Mg Homojunction为题发表在国际权威期刊《先进科学》(Advanced Science)上,西安交通大学为第一通讯单位。西安交通大学博士生陈冉升和青年教师李强为共同第一作者。西安交通大学李强副教授、中科院半导体所郭亚楠研究员、英国卡迪夫大学Tao Wang教授、西安电子科技大学郝跃院士为共同通讯作者。同时,感谢西安交通大学分析测试共享中心对本工作表征方面的支持。

李强课题组一直致力于六方氮化硼材料的外延生长与深紫外光电器件的研究,近期工作在Advanced Functional Materials, ACS Applied Materials & Interfaces, Applied Surface Science、Crystal Growth & Design等最具影响力期刊上发表了一系列文章。(来源:西安交大)

转载请标注来源!更多LED资讯敬请关注官网(www.ledinside.cn)或搜索微信公众账号(LEDinside)。

【版权声明】
「LEDinside - LED在线」所刊原创内容之著作权属于「LEDinside - LED在线」网站所有,未经本站之同意或授权,任何人不得以任何形式重制、转载、散布、引用、变更、播送或出版该内容之全部或局部,亦不得有其他任何违反本站著作权之行为。
【免责声明】
1、「LEDinside - LED在线」包含的内容和信息是根据公开资料分析和演释,该公开资料,属可靠之来源搜集,但这些分析和信息并未经独立核实。本网站有权但无此义务,改善或更正在本网站的任何部分之错误或疏失。
2、任何在「LEDinside - LED在线」上出现的信息(包括但不限于公司资料、资讯、研究报告、产品价格等),力求但不保证数据的准确性,均只作为参考,您须对您自主决定的行为负责。如有错漏,请以各公司官方网站公布为准。
3、「LEDinside - LED在线」信息服务基于"现况"及"现有"提供,网站的信息和内容如有更改恕不另行通知。
4、「LEDinside - LED在线」尊重并保护所有使用用户的个人隐私权,您注册的用户名、电子邮件地址等个人资料,非经您亲自许可或根据相关法律、法规的强制性规定,不会主动地泄露给第三方。