真明丽散热塑料在LED筒灯/球泡的应用

一:概述
传统导热材料多为金属和金属氧化物,以及其他非金属材料,如石墨、炭黑、A1N、SiC等。随着科学技术和生产的发展,许多产品对导热材料提出了更高要求,希望其具有更加优良的综合性能,质轻、耐化学腐蚀性强、电绝缘性优异、耐冲击、加工成型简便等。导热绝缘聚合物复合材料因其优异的综合性能越来越多得到广泛应用。

但是由于高分子材料多为热的不良导体,限制了它在导热方面的应用,因而开发具有良好导热性能的新型高分子材料,成为现在导热材料的重要发展方向。特别是近年来,随着大功率电子、电气产品的快速发展,必然会出现越来越多的由于产品发热,导致产品功效降低,使用寿命缩短等问题。有资料表明,电子元器件温度每升高2℃,其可靠性下降10%;50℃时的寿命只有25 ℃时的1/6 。

导热填料主要分为两种:一种是导热绝缘填料,如金属氧化物填料、金属氮化物填料等。另一种是导热非绝缘填料,如炭基填料和各种金属填料等。前者主要用于电子元器件封装材料等对电绝缘性能有较高要求的场合,后者则主要用于化工设备的换热器等对电绝缘性能要求较低的场合。填料的类型、粒径大小及分布、填充量和填料与基体间的界面性能对复合材料的热导率都有影响。

导热塑料使用的基体聚合物主要有:PA(尼龙),FEP(全氟聚丙烯),PPS,PP,PI 环氧树脂,POM,PS 及PS与PE复合材料等。

聚合物基导热复合材料的国内外研究现状:聚合物基导热复合材料是通过添加导热填料来提高高分子材料的导热性能。一般是以高分子聚合物(如聚烯烃、环氧树脂、聚酰亚胺、聚四氟乙烯等)为基体,较好导热性能的金属氧化物如A1203、MgO,导热及绝缘性能良好的金属氮化物AIN、BN,以及高热导率的金属材料如Cu、AI等为导热填料,进行二相或多相体系的复合。目前欧洲和日本及美国都有公司报道有成熟产品在推广使用。例如:荷兰皇家帝斯曼集团工程塑料推出了21世纪以来的第一种新型聚合物:Stanyl®TC系列导热塑料可用于LED; 成为向LED照明应用的塑料散热管理解决方案的全球领先供应商。美国先进陶瓷公司和EPIC公司开发出热导率达20.35W/(m•K)的BN/聚丁烯(PB)复合工程塑料,可用普通工艺如模压成型制备而得,主要可用于电子封装、集成电路板、电子控制元件、计算机壳体等。

国内利用模压法制备了氮化铝环氧树脂(EP)导热复合材料,AIN含量、粒径、硅烷偶联剂及加工工艺对体系导热性能的影响。研究表明,随着A1N含量、粒径的增加,体系的导热性能不断提高;偶联剂的加入增强了AIN和环氧树脂的界面粘结性能,减小了界面间的热阻,从而有利于体系导热性能的提高。当AIN粒径为5.3微米含量为67v01%时,AIN/EP导热复合材料的热导率为14W/(m•K)。

二:导热机理

导热高分子材料的导热性能最终由高分子基体、导热填料以及它们之间的相互作用来共同决定。高分子基体中基本上没有热传递所需要的均一致密的有序晶体结构或载荷子,导热性能相对较差。作为导热填料来讲,其无论以粒状、片状、还是纤维状存在,导热性能都比高分子基体本身要高。当导热填料的填充量很小时,导热填料之间不能形成真正的接触和相互作用,这对高分子材料导热性能的提高几乎没有意义;只有当高分子基体中,导热填料的填充量达到某一临界值时,导热填料之间才有真正意义上的相互作用,体系中才能形成类似网状或链状的形态一即导热网链。当导热网链的取向与热流方向一致时,导热性能提高很快;体系中在热流方向上未形成导热网链时,会造成热流方向上热阻很大,导热性能很差。因此,如何在体系内最大程度地在热流方向上形成导热网链成为提高导热高分子材料导热性能的关键所在。

导热理论模型:目前,导热胶黏剂的研究主要集中在填充型导热胶黏剂的研究上,结构型导热胶黏剂的研究还鲜有报道。许多研究者曾提出各种模型对填充导热材料的热导率进行预测,但理论模型所讨论的填充量一般集中在低填充或中等填充(体积分数10% ~30%)上,而很少提及在高填充及超高填充下的理论值与实验结果的相符合的情况。Agari Y 』提出了适用于高填充及超高填充量的理论模型。该理论模型认为:在填充聚合物体系中,若所有填充粒子聚集形成的传导块与聚合物传导块在热流方向上是平行的,则复合材料导热率最高;若与热流方向相垂直,则复合材料的导热率为最低。该理论模型充分考虑了粒子对复合材料热性能的影响,并假定粒子的分散状态是均匀的,从而得到了理论等式。其表达式为:
A=VfC21g),2+ (1一 )lg(c1A1)
式中,A为复合材料的导热系数,A 和A 分别为聚合物和填料的导热系数, 为填料的体积分数,c 为影响结晶度和聚合物结晶尺寸的因子,C 为形成粒子导热链的自由因子。c越接近1,粒子就越容易形成导热链,其对复合材料导热性能影响也越大。其在后来的研究中发现:在低填充至超高填充范围内Maxwell-Eucken,Bruggeman,Cheng-Vochen以及Nielsen的理论模型与其它的理论模型相比较,其理论曲线与实验数据基本相符,其它几种理论模型与实验数据都有一定的偏差。

三:本文研究的目的
目前国内外功率型LED行业灯具普遍使用铸铝作为外壳散热材料,使用散热塑料外壳可节约大量能源和提高生产效率,对于降低LED产品成本具有极为现实的经济意义。使用塑料后还能极大地拓展灯具工程师开发产品的灵和性和创造性,设计更加轻便、美观的产品以便更快的向大众消费者推广。我们基于广泛研究的基础上提出使用散热塑料通过模具生产8瓦、10瓦LED筒灯底座,检查产品各个部位的温度是否合符要求来检验散热塑料是否合格,以便大批量生产。
 

四:结果测试

本文使用自行研制的散热材料制作8瓦、10瓦LED筒灯底座取代原先使用的铸铝底座制作成8瓦、10瓦LED筒灯低座,按照标准IEC60598 12.4使用多路温升测试仪测试灯杯各点温度。

图片:

 

测试结果:

1:8瓦LED筒灯温度测试:
测试记录
1、测试条件及要求:样品通电(220V/50Hz)待温度稳定后记录各点最高的温度,要求不超过温度限值
2、标准条款:IEC60598   12.4
3、测试仪器:多路温升测试仪

最高温差3.4度
 
2:10瓦LED筒灯温度测试:

最高温差5.1度


四:结果分析


从两种不同瓦数的筒灯测试结果看,我们用自制的散热材料生产的筒灯与用铸铝外壳的生产的筒灯在各个测试点的温度相差不大,最高温差不超过6度,全部测试点的温度都低于极限温度,都能使用。从而达到了用散热塑料代替铸铝来生产LED筒灯的目的。


文章来源:真明丽集团封装研发中心  刘英杰、李荣、许永现 

【版权声明】
「LEDinside - LED在线」所刊原创内容之著作权属于「LEDinside - LED在线」网站所有,未经本站之同意或授权,任何人不得以任何形式重制、转载、散布、引用、变更、播送或出版该内容之全部或局部,亦不得有其他任何违反本站著作权之行为。
【免责声明】
1、「LEDinside - LED在线」包含的内容和信息是根据公开资料分析和演释,该公开资料,属可靠之来源搜集,但这些分析和信息并未经独立核实。本网站有权但无此义务,改善或更正在本网站的任何部分之错误或疏失。
2、任何在「LEDinside - LED在线」上出现的信息(包括但不限于公司资料、资讯、研究报告、产品价格等),力求但不保证数据的准确性,均只作为参考,您须对您自主决定的行为负责。如有错漏,请以各公司官方网站公布为准。
3、「LEDinside - LED在线」信息服务基于"现况"及"现有"提供,网站的信息和内容如有更改恕不另行通知。
4、「LEDinside - LED在线」尊重并保护所有使用用户的个人隐私权,您注册的用户名、电子邮件地址等个人资料,非经您亲自许可或根据相关法律、法规的强制性规定,不会主动地泄露给第三方。